On a Theory of Nonparametric Pairwise Similarity for Clustering: Connecting Clustering to Classification
نویسندگان
چکیده
Pairwise clustering methods partition the data space into clusters by the pairwise similarity between data points. The success of pairwise clustering largely depends on the pairwise similarity function defined over the data points, where kernel similarity is broadly used. In this paper, we present a novel pairwise clustering framework by bridging the gap between clustering and multi-class classification. This pairwise clustering framework learns an unsupervised nonparametric classifier from each data partition, and search for the optimal partition of the data by minimizing the generalization error of the learned classifiers associated with the data partitions. We consider two nonparametric classifiers in this framework, i.e. the nearest neighbor classifier and the plug-in classifier. Modeling the underlying data distribution by nonparametric kernel density estimation, the generalization error bounds for both unsupervised nonparametric classifiers are the sum of nonparametric pairwise similarity terms between the data points for the purpose of clustering. Under uniform distribution, the nonparametric similarity terms induced by both unsupervised classifiers exhibit a well known form of kernel similarity. We also prove that the generalization error bound for the unsupervised plugin classifier is asymptotically equal to the weighted volume of cluster boundary [1] for Low Density Separation, a widely used criteria for semi-supervised learning and clustering. Based on the derived nonparametric pairwise similarity using the plug-in classifier, we propose a new nonparametric exemplar-based clustering method with enhanced discriminative capability, whose superiority is evidenced by the experimental results.
منابع مشابه
Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کامل